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ABSTRACT

Seasonal forecasting with a coupled model requires accurate initial conditions for the ocean. A hybrid data

assimilation has been implemented within the National Centers for Environmental Prediction (NCEP)

Global Ocean Data Assimilation System (GODAS) as a future replacement of the operational three-

dimensional variational data assimilation (3DVar) method. This Hybrid-GODAS provides improved rep-

resentation of model uncertainties by using a combination of dynamic and static background error

covariances, and by using an ensemble forced by different realizations of atmospheric surface conditions. An

observing system simulation experiment (OSSE) is presented spanning January 1991 to January 1999,

with a bias imposed on the surface forcing conditions to emulate an imperfect model. The OSSE com-

pares the 3DVar used by the NCEP Climate Forecast System (CFSv2) with the new hybrid, using sim-

ulated in situ ocean observations corresponding to those used for the NCEP Climate Forecast System

Reanalysis (CFSR).

The Hybrid-GODAS reduces errors for all prognostic model variables over the majority of the experiment

duration, both globally and regionally. Compared to an ensemble Kalman filter (EnKF) used alone, the

hybrid further reduces errors in the tropical Pacific. The hybrid eliminates growth in biases of temperature

and salinity present in the EnKF and 3DVar, respectively. A preliminary reanalysis using real data shows that

reductions in errors and biases are qualitatively similar to the results from the OSSE. The Hybrid-GODAS is

currently being implemented as the ocean component in a prototype next-generation CFSv3, and will be used

in studies by the Climate Prediction Center to evaluate impacts on ENSO prediction.

1. Introduction

The National Centers for Environmental Prediction

(NCEP) has used the same 3D variational data assimi-

lation (3DVar) approach to provide initial conditions

and verification of the ocean state since its develop-

ment in the late 1980s (Derber and Rosati 1989). The

computationally inexpensive 3DVar was implemented

operationally at NCEP within the Global Ocean Data

Assimilation System (GODAS) in 2003 (Behringer and

Xue 2004; Behringer 2007) and as part of the Climate

Forecast System (CFS) in 2004 (http://rda.ucar.edu/

datasets/ds094.0; Saha et al. 2006). Increases in com-

puting power and advances in data assimilation algo-

rithms have made it practical to use higher-cost

ensemble-based approaches that offer more represen-

tative error estimates and improvements in accuracy.

For the atmosphere, a hybrid 3DVar–ensemble Kalman

filter (EnKF) became operational in the NCEP Global

Forecast System (GFS) in 2012 (Kleist 2012; Wang et al.

2013). That hybrid system is also intended as the
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atmospheric component of the next-generation CFS

(CFSv3), thusmotivating the development of an ensemble-

based counterpart for the ocean. Here we present a set of

idealized experiments designed to explore the potential

gain in accuracy we might expect relative to the current

operational approach.

This ocean data assimilation upgrade must address

five issues: 1) introduce time-evolving estimates of cor-

related errors within the ocean model forecast, 2) in-

troduce quantitative error representation of surface

forcing conditions at the upper ocean boundary, 3)

provide filter stability even where observations are

sparse, 4) allow for a wide variety of new observational

data types such as time-varying gravity, and 5) present

itself as an extension of the current system. Numerous

studies have explored ensemble-based data assimilation

for the global ocean suggesting that such a filter can

address some of these issues (Evensen 1994; Zhang et al.

2007; Keppenne et al. 2008; Zhang and Rosati 2010;

Penny 2011; Penny et al. 2013; Karspeck et al. 2013).

However, such filters tend to have problems in regions

of sparse data (filter stability), and they would have

represented a dramatic change relative to the current

operational system at NCEP. Other approaches using

3DVar (Balmaseda et al. 2013) or ensemble optimal

interpolation (Oke et al. 2013) have provided advances

in ocean data assimilation, but do not explicitly repre-

sent the dynamical evolution of the forecast error co-

variance. Martin et al. (2015) give a further review of

various operational ocean data assimilation systems.

The ‘‘Hybrid-Gain’’ approach developed by Penny

(2014) addresses the issues outlined above. This ap-

proach combines the gain matrices of the local ensemble

transform Kalman filter (LETKF; Hunt et al. 2007) and

the operational 3DVar (Derber and Rosati 1989). The

result is a dynamically varying background error co-

variance estimate, driven by model uncertainties, that

simultaneously leverages the climatological background

error covariance estimate to which the current opera-

tional system has been tuned. As a further benefit, rel-

ative to LETKF alone the hybrid reduces sensitivity to

tuning parameters such as localization and inflation. A

separate study by Hamrud et al. (2014) recently exam-

ined theHybrid-Gain approachwithin the context of the

European Centre for Medium-Range Weather Forecasts

(ECMWF) operational hybrid of four-dimensional varia-

tional data assimilation (4DVar) and ensemble data as-

similation (EDA). They found that their Hybrid-Gain

EnKF-Variational system significantly outperformed ei-

ther their 4DVar or EnKF used alone, and was competi-

tive with the operational 4DVar-EDA.

Here we present a set of idealized observing system

simulation experiments (OSSEs) using the surface

forcing and the ocean observing system available during

the 8-yr period 1991–98 to explore the comparative

benefits of the new hybrid filter relative to the current

operational filter in the context of global ocean data as-

similation. The period is chosen because it contains dra-

matic interannual variability, notably the 1997/98ElNiño
and the Indian Ocean dipole event (Saji et al. 1999;

Webster et al. 1999). We find that in producing spatio-

temporally varying estimates of uncertainty, the new

hybrid filter provides amore accurate estimate of the true

ocean state than the current operational 3DVar, with an

overall reduction in temperature and salinity biases.

2. Methodology

Anature run using an ocean general circulationmodel

was commenced in 1985 using the CFSR ocean state

estimate as initial conditions. This nature run is consid-

ered to be the true evolution of the ocean and is sampled

at the time and place where operationally assimilated

temperature and salinity profiles are available from 1991

to 1998, with random errors added to these observations

as described below. Three sets of experiments are

compared, the only differences being the data assimi-

lation algorithm and surface forcing. These data assim-

ilation experiments are conducted driven by imperfect

surface forcing. The first set uses the current operational

3DVar as described in Saha et al. (2014), the second set

uses LETKF, and the third set uses the new hybrid. A

reference ‘‘perfect forcing’’ data assimilation experi-

ment is conducted using perfect initial conditions and

perfect surface forcing to evaluate the range of perfor-

mance of the operational 3DVar configuration in the

OSSE. Finally, to give an indication of applicability in an

operational setting, a preliminary reanalysis using real

observational data over the same time period is per-

formed for both 3DVar and the hybrid.

a. Model

TheGeophysical FluidDynamics Laboratory (GFDL)

Modular Ocean Model (MOM4p1) uses the configura-

tion implemented for the Climate Forecast System Re-

analysis (CFSR), as described by Saha et al. (2010). The

model is a finite difference version of the ocean primitive

equations using the Boussinesq and hydrostatic approx-

imations. We a tripolar (Murray 1996) staggered Ara-

kawa B grid in the horizontal and the z* coordinate

geometric height in the vertical. The zonal resolution is
1/28. The meridional resolution is 1/48 between 108S and

108N and gradually increases to 1/28 poleward of 308S and

308N. There are 40 layers in the vertical, with 10-m res-

olution from 0 to 240m, gradually increasing to about

511m in the bottom layer. This results in 27 layers in the
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upper 400m with a bottom depth of 4478m. The iso-

neutral method developed by Gent and McWilliams

(1990) and the nonlinear scheme of Smagorinsky

(Griffies and Hallberg 2000) are used for horizontal

mixing of tracers and momentum, respectively. Vertical

mixing follows the nonlocal K-profile parameterization

of Large et al. (1994). The upper boundary is an explicit

free surface, and for the ocean floor we use the Ocean

Circulation and Climate Advanced Modeling (OCCAM)

0.28 bathymetry. Variations in model physics, such as

those explored by Griffies et al. (2009) and Danabasoglu

et al. (2014), are not considered here.

b. Surface forcing and initial ensemble generation

The nature run is forced by surface fluxes from the

NCEP–DOE Reanalysis v2 (R2) (Kanamitsu et al.

2002). To degrade surface forcing to reflect uncertainties

in the surface meteorology, we generate a 56-member

ensemble of surface conditions using ensemble pertur-

bations from the Twentieth Century Reanalysis Project

(20CR) daily averaged 3-h forecasts (Compo et al. 2006,

2011; Whitaker et al. 2004). These perturbations are dif-

ferences from the 20CR ensemble mean for surface mo-

mentum stress (Nm22), precipitation rate (kgm22 s21),

net downward shortwave radiation (Wm22), specific

humidity at 2m (kgkg21), and air temperature at

2m (8C). The net downward longwave radiation (Wm22)

and mean sea level pressure (Pa) are used unperturbed

from the R2. Thus, for the OSSEs, the 20CR ensemble

perturbations are used to simulate the uncertainty in the

R2 forcing. Members 1–28 (out of 56) are selected to

drive the ensemble-method ocean forecasts, thus impos-

ing an intentional bias to the ensemble mean, while two

randomly selectedmembers from these 28 drive forecasts

are used for two experiments using 3DVar. For the real-

data experiment, the full 56-member ensemble of 20CR

surface forcing perturbations is used for the hybrid, cen-

tered at the R2.

Following the NCEP procedure used in the opera-

tional 3DVar, we relax sea surface temperature (SST)

for the nature run and all experiments to the daily

NOAA Optimal Interpolation (OI) v2 SST product

constructed from Pathfinder AVHRR data (Reynolds

et al. 2002, 2007) on a 10-day time scale. Sea surface

salinity is relaxed to the monthly climatology based on

the World Ocean Database 1998 (Conkright et al. 1999)

with a 30-day time scale.

c. Observations

Simulated temperature and salinity profiles are

sampled from the nature run based on observing

networks operational during 1991–98 (Fig. 1). This

FIG. 1. (top) Global coverage of temperature profiles used for the experiment period by

vertical depth (m) from 1978 to 2013 with the experiment period highlighted by the black

rectangle and (bottom) the spatial distribution of all observations from 1991 to 1999.
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historical observational data coverage is sparse and

often irregular. In particular, we use the expendable

bathythermograph (XBT) profiles acquired from the

Global Temperature-Salinity Profile Project (GTSPP;

http://www.nodc.noaa.gov/GTSPP/; Sun et al. 2010),

conductivity–temperature–depth (CTD) profiles, the

Tropical Atmosphere Ocean/Triangle Trans-Ocean

Buoy Network (TAO/TRITON) (McPhaden et al.

1998), the Prediction and Research Moored Array

in the Tropical Atlantic (PIRATA; Bourlès et al.

2008) and the Research Moored Array for African–

Asian–Australian Monsoon Analysis and Prediction

(RAMA). We also sample simulated salinity mea-

surements at the locations of the climatologically

based synthetic salinity observations used for the

CFSR (Saha et al. 2010). Observations poleward of

658N are excluded because they are not used in the

CFSR.

Observational errors are added to these simulated

profiles in two parts: a representativeness error «r is a

scalar normal random variable applied to the entire

profile with standard deviation given by vector sr; and

an instrument error en is a vector-valued normal random

variable applied to each individual measurement within

the profile, with scalar standard deviation sn an order of

magnitude smaller than jjsrjj:

yoi 5H(xt)1 «
r
sr

i 1s
n
eni . (1)

Here, the vector yoi is a subset of the total observations

representing a single profile i, and H(�) transforms the

model state to the observation location (via in-

terpolation). Thesr values vary with depth according to

the square root of the vertical temperature gradient and

are scaled to have values between 18C at depth and 1.58C
at the surface for temperature, and between 0.05 and

0.15 psu for salinity.

This setup is meant to emulate the operational en-

vironment. It is common practice (although not accu-

rate) to set the off-diagonal elements of the error

covariance matrix R to zero. For all algorithms used

here, the observational errors are assumed to be un-

correlated (i.e., we use a diagonal Rmatrix). However,

these correlations do exist in real-world observations

due to representativeness errors relative to the model

grid. This is an inaccuracy in the operational system

that we have intended to emulate. The observations are

binned temporally by day. For the 4D-LETKF com-

ponent, innovations are generated by comparing daily

observations to the model forecasts for the corre-

sponding day. Identical observations, observation er-

rors, and error covariance matrix R are used for all

experiments.

d. Data assimilation

The hybrid method is based on Penny (2014) and

utilizes two fully functioning and independent data

assimilation systems: the 4D-LETKF ocean assimila-

tion system (Penny 2011; Penny et al. 2013), based on

algorithms developed by Ott et al. (2004) and Hunt

et al. (2007), and the NCEP operational 3DVar

(Behringer et al. 1998; Vossepoel and Behringer 2000;

Behringer 2007; Saha et al. 2010). LETKF uses error

covariance estimates provided by the ensemble to update

the temperature, salinity, zonal velocity, and meridio-

nal velocity fields. TheNCEPoperational 3DVar updates

only the temperature and salinity fields.We note that this

is not a fundamental limitation of 3DVar, as other op-

erational variational systems have the capability to cor-

rect unobserved fields such as zonal and meridional

velocity as well (Balmaseda et al. 2013).

We utilize the LETKF algorithm of Hunt et al. (2007)

to obtain an analysis by minimizing the objective

function:

J
P
(x)5 (x2 xb)T(Pb)21(x2 xb)

1 [yo 2H(x)]TR21[yo 2H(x)] . (2)

This objective function expresses our relative confi-

dence between the mean background state xb (via the

background error covariance matrix Pb) and the obser-

vations yo (via the observation error covariance matrix

R). In practice, the model space dimensionm is typically

much larger than the observation space dimension l,

which is typically much larger than the ensemble space

dimension k. We use subscripts to convey these di-

mensions in the equations that follow.

Localization is achieved by performing a separate anal-

ysis at each grid point, using only observations within a

specified geospatial radius. This is called observation-

space localization, or R localization (Greybush et al.

2011), to differentiate from localization approaches that

eliminate long-distance correlations by operating on the

background error covariance matrix. The estimated er-

rors associated with the observations are scaled with a

Gaussian function based on their distance from the an-

alyzed grid point. Our choice of horizontal localization

radius is roughly a factor of 3 larger than the Rossby

radius of deformation (Chelton et al. 1998), decreasing

linearly from a s radius of 720km at the equator to

200km at the poles. Vertical inconsistencies caused by a

lack of observations in the deep ocean are known to

generate spurious currents and vertical velocities in ocean

analyses (Zhang and Rosati 2010; Karspeck et al. 2013).

To preserve balancewithin eachmodel ocean column,we

do not apply localization in the vertical dimension.
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The details for formulating the sequential update

from the objective function (2) are given by Hunt et al.

(2007).We first compute the analysis error covariance in

ensemble space,

~Pa
k3k 5 [(k2 1)I

k3k
1 (Yb

l3k)
TR21

l3lY
b
l3k]

21 , (3)

where Yb 5 HXb, assuming a linearized observation

operator H, with perturbations from the ensemble mean

state forming the columns of Xb. The symmetric square

root of this matrix is computed to obtain the weight

matrix Wa that determines the linear combination of

background ensemble members used to form the anal-

ysis ensemble:

Wa
k3k 5 [(k2 1)~Pa

k3k]
1/2 . (4)

To transform the background ensemble to the analysis

ensemble, we multiply these weights with each of the

background ensemble member perturbations:

Xa
m3k 5Xb

m3kW
a
k3k . (5)

These weights are applied identically to each model

level, thus maintaining the first-order vertical balance in

the analysis. The LETKF analysis perturbations com-

puted in (5) are added to an updated analysis ensemble

mean to create the final analysis ensemble:

wa
k31 5

~Pa
k3k(Y

b
l3k)

TR21
l3l(y

o 2Hxb)
l31

, (6)

xam31 5Xb
m3kw

a
k31 1 xbm31 , (7)

where xb is the mean background state. This procedure

is performed independently at each model grid point.

The values at the center of each local analysis are

compiled to form the global analysis xa.

While the traditional hybrid covariance approach

discards the ensemble mean information xa, the hybrid

gain approach utilizes the LETKF analysis ensemble

mean as an improved background estimate for 3DVar.

The 3DVar component of our hybrid minimizes the

following objective function, which is similar to (2):

J
B
(x)5 (x2 xa)TB̂21(x2 xa)1 (yo 2Hx)TR21(yo 2Hx) .

(8)

The preferred choice of B̂ is the true analysis error

covariance matrix; however, as this is unknown it is in-

stead approximated with the climatological background

error covariance matrix used in the operational 3DVar.

Following Derber and Rosati (1989), the horizontal com-

ponent of the error covariance matrix B is approximated

numerically by repeated applications of a Laplacian

smoother. Behringer et al. (1998) and Vossepoel and

Behringer (2000) describe the resulting horizontal co-

variance between any two points as

a(z) exp

"
2

 
d2
1

b2
1

1
d2
2

b2
2

!
(cosf)21

#
, (9)

where a(z) is proportional to the square root of the

local vertical temperature gradient (at depth z) com-

puted from the forecast, d1 and d2 are distances be-

tween points in the zonal and meridional directions, b1
and b2 are parameters defining the horizontal length

scale, and cos(f) scales the parameters by latitude f.

Within 108 of the equator b1 5 2b2 (900 and 450 km,

respectively). Poleward of 108 the ratio b1/b2 is tapered

exponentially so that at 308 the ratio b1/b2 5 1.4, at 508
b1/b2 5 1.1, and at 608 b1/b2 5 1.0. The vertical co-

variance is estimated similarly, with length scales

specified as a function of depth. At any level the ver-

tical scale is twice the ocean model layer thickness

(Saha et al. 2010).

As in the operational 3DVar, the preconditioned

conjugate gradient (PCG) algorithm implemented for

the ocean by Derber and Rosati (1989) is applied to

minimize the residual dJ/d(Dx)5 r of the cost functional

J, with respect to the correction fieldDx5 (x2 xa), using

preconditioning matrix B:

Br5Dx1BHTR21(yo 2Hx) . (10)

Upon convergence of PCG we find the correction field

Dx that approximates the minimum of the functional J

over the global domain within a small tolerance, and

consequently the analysis estimate xa that corresponds

to this minimizer.

As described above, B is an overestimation of the

analysis error covariance matrix. Therefore, a simple

parameter a is used to weaken the correction made by

the 3DVar minimization. We update the analysis mean

as a weighted combination of LETKF and the 3DVar

correction and recenter the ensemble to this hybrid

analysis:

xaHybrid 5axa 1 (12a)xa , (11)

Xa
Hybrid 5Xa 1 xaHybridv

T , (12)

where v5 (1, 1, . . . , 1, 1)T is a column of k ones used to

add the mean to each column of Xa.

While this algorithm is algebraically equivalent to

forming hybrid gain matrices derived from 3DVar and

LETKF (Penny 2014), it has the advantage that a hybrid

data assimilation system can be formed from two exist-

ing operational-scale data assimilation systems with

almost no modification to the individual component
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systems. The pure 3DVar is recovered by simply by-

passing the LETKF procedure, while the pure LETKF is

recovered by setting a 5 0, thus bypassing the 3DVar

correction.

We note that the formulation ofB for 3DVar does not

contain cross-covariance between temperature and sa-

linity. In the operational system, corrections to salinity

are achieved by assimilating a ‘‘synthetic’’ salinity ob-

servation derived by applying the climatological re-

lationship between temperature and salinity to the

observed temperature at that location. In our OSSE, we

instead sample an observed salinity profile from the

nature run at every synthetic salinity profile location to

ensure this multivariate balance is approximately known

by 3DVar.

e. Experiment design and evaluation approach

A single model run forced by the R2 surface forcing

was selected to serve as the nature run, or ‘‘truth’’

dataset for all OSSEs. The experiment period 1991–98

was selected to coincide with the introduction of the

TOPEX/Poseidon satellite altimetry (September 1992)

and the strong ENSO signals present (1997/98). Against

this truth dataset, we compare (i) two cases of 3DVar,

‘‘(01)’’ and ‘‘(16)’’, using model integrations forced by

randomly selected surface conditions from surface

forcing ensemble members 1 and 16, respectively; (ii)

LETKF, using k 5 28 ensemble members; (iii) the hy-

brid with a 5 0.5, using k 5 28 and k 5 8 ensemble

members; and (iv) a reference ‘‘perfect’’ 3DVar assim-

ilation presented as a baseline for this comparison, using

perfect initial conditions and perfect surface forcing

(R2). The analysis cycle interval is 5 days. For reference,

the details of these experiments are reiterated in

Table 1.

We define bias as the difference between an estima-

tor’s expected value and the true value of the parameter

being estimated. In this case, the true value of the sur-

face forcing (R2) is the mean of the 56-member en-

semble, while the surface forcing bias is the difference

between the mean of members 1–28 and the R2. For

example, the time-averaged wind stress curl is shown

compared to the root-mean square (RMS) of the wind

stress curl bias in Fig. 2. Relative to the climate vari-

ability, the largest bias is in the tropics. Ensemble sta-

tistics of all surface forcing fields are given as part of the

20CR dataset and can be accessed, for example, via the

NOAA/Earth System Research Laboratory (ESRL)/

Physical Sciences Division (PSD).

The two cases using 3DVar with surface forcing

sampled from the 28 surface forcing conditions used

by LETKF may be considered a small ‘‘ensemble of

3DVars.’’ This small sample is used to approximate the

bias in the 28-member subset of surface forcing condi-

tions. Such an ensemble could be increased to 28

members to ensure identical biases in the surface forc-

ing. Additional experiments (not shown) were run with

3DVar using a variety of common ocean assimilation

practices, such as the use of incremental analysis updates

(IAU; Bloom et al. 1996), and extended observation

windows that reuse observations across multiple analy-

sis cycles. Results for 3DVar are presented for the

configuration using only IAU, which exhibited the

lowest root-mean-square errors (RMSEs) among all

combinations of these approaches.

For a set of points xi, for i5 1 to n, in a given domainD

within the model space, the RMSEs for a given time are

calculated between the analysis and truth as a spatial

average:

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�
n

i51

(xai 2 xti)
2

s
. (13)

We evaluate RMSE for the global ocean and subregions

of the major ocean basins to form general statistics that

quantify the OSSE results. Because the true state is not

known for real-world systems, we also calculate the

RMS deviations (RMSDs) between the observations

and forecast, computed in the observation space:

TABLE 1. Parameters for OSSEs in this study. Observations are sampled from the nature run. A reference perfect-forcing case is used to

evaluate the impact of observational noise in a perfect system. The remaining experiments use perturbations (pert.) from the Twentieth

Century Reanalysis Project (20CR) applied to the NCEP–DOE R2 surface forcing. Identical errors are used for each observation across

all experiments.

Experiment Data assimilation Surface forcing Ensemble size Observations Figure color

Nature (truth) None NCEP–DOE R2 1 None —

Perfect-forcing 3DVar NCEP–DOE R2 1 T/S profiles Gray

3DVar (surface case 01) 3DVar 20CR pert. 01 1 T/S profiles Red

3DVar (surface case 16) 3DVar 20CR pert. 16 1 T/S profiles Dark red

LETKF LETKF 20CR pert. 1–28 28 T/S profiles Green

Hybrid (k 5 8) Hybrid LETKF/3DVar 20CR pert. 1–8 8 T/S profiles Light blue

Hybrid Hybrid LETKF/3DVar 20CR pert. 1–28 28 T/S profiles Blue
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RMSD5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�
n

i51

(yoi 2Hxbi )
2

s
. (14)

Both RMSEs andRMSDs are computed pointwise. Bias

is computed as the average signed error or deviation.

Diagnostic statistics as derived by Desroziers et al.

(2005) and applied by Hoffman et al. (2013) and Martin

et al. (2015) are used to evaluate the prescribed er-

ror covariances within the system. We evaluate the

diagnosed observation error in relation to the prescribed

observation error, varying by depth and time. We eval-

uate the background error in comparison to the RMSEs.

We use the 208C isotherm as a proxy for the thermo-

cline depth when examining analysis errors in the trop-

ical Pacific. Changes in ocean heat content in the

equatorial Pacific have been identified as important in-

dicators of ENSO variability (Wyrtki 1985; Cane et al.

1986; Zebiak 1989; Jin 1997; Meinen and McPhaden

FIG. 2. (top) Climatological average of the wind stress curl for the 56-member mean (R2)

from 1991 to 1998. (middle) RMS of daily wind stress curl bias computed as the difference

between the 56-member mean and the 28-member subset mean over the same time period.

(bottom) RMS of daily wind stress curl bias normalized by the standard deviation of the R2

around the climatological average, also over the same time period.
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2000; Kessler 2002; Trenberth et al. 2002) and in the pre-

diction of summer monsoon rainfall in India (Rajeevan

and McPhaden 2004). McPhaden (2003) noted that un-

like for SST there is no spring persistence barrier for

integrated upper ocean heat content. It has similarly

been found in modeling studies that accurate initializa-

tion of upper ocean heat content in the tropical Pacific

often reduces the prominence of the spring prediction

barrier for SST (Smith et al. 1995; Xue et al. 2000). Chen

et al. (1995) demonstrated that reduced noise in the wind

stress field prior to initialization also effectively elimi-

nated the spring barrier to prediction in the Zebiak and

Cane (1987) model.

Finally, observed-minus-forecast RMSDs are com-

puted for the same time period (1991–98) for a pre-

liminary reanalysis using observational data from the

historical record. These experiments use only observed

temperature and salinity profiles for LETKF, but include

synthetic salinity profiles for the 3DVar component. In

addition, the surface forcing ensemble is expanded to

include the full set of 56-member 20CR perturbations,

centered at the R2. The model and data assimilation

configurations are otherwise the same as for the OSSE

described above.

3. Results

We first examine the global upper ocean. We focus on

the upper 700m containing the thermocline at most

latitudes, a layer spanned by the XBT profiles. Next, we

examine RMSEs in regional subdomains, and examine

the North Atlantic in more detail. We then examine the

tropics, including temperature and salinity errors along

the equator, and errors in thermocline depth.

In the global average, there is an 18% and 24% re-

duction in RMS temperature and salinity errors, re-

spectively (Fig. 3), for the ensemble-based approaches

versus 3DVar. Both the hybrid and LETKF have

FIG. 3. (top) Global analysis- minus truth-RMS errors (RMSEs) and (bottom) 12-month moving average of biases

in (left) temperature and (right) salinity for the top 700m. Results are shown for the hybrid (blue), LETKF (green),

3DVar (using surface forcing perturbations: 01 is red, 16 is dark red), and the reference perfect-forcing case (gray).

The ensemble methods produce lower RMSEs than 3DVar and approach the RMSE levels of the reference perfect-

forcing case. A small cold bias is produced by LETKF and salty bias produced by 3DVar, both gradually increasing

throughout the experiment period. The hybrid reduces these biases while maintaining a similar RMSE accuracy

with LETKF.

NOVEMBER 2015 P ENNY ET AL . 4667



RMSEs close to the levels produced by the reference

perfect-forcing system. Similar qualitative results can be

ascertained from the observed-minus-forecast RMSD

metric (Fig. 4). However, we note that the magnitude of

the RMSD is not indicative of the magnitude of the true

error, but rather the combined error and observational

noise.

The RMSEs of the reference perfect-forcing/perfect-

initial-condition system can be interpreted as the

amount of observational noise admitted into the system

by a perfect-model 3DVar, demonstrating that inac-

curacies in the representation of B exacerbate the im-

pact of observational noise on the analysis. In some

regions (e.g., the North Pacific, North Atlantic, and

tropical Atlantic) the hybrid and LETKF produced

mean errors lower than this baseline level.

LETKF and the hybrid have smaller time-mean

RMSEs than 3DVar in all regions, with RMS errors

for temperature reduced by: 14% in the tropical Pacific,

29% in the tropical Atlantic, 25% in the tropical Indian

Ocean, 22% in the North Pacific, 37% in the North

Atlantic, and 13%–17% in the southern oceans. RMSEs

for salinity are reduced by 20% in the tropical Pacific,

39% in the tropical Atlantic, 30% in the tropical Indian

Ocean, 26% in the North Pacific, 36% in the North

Atlantic, and 16%–24% in the southern oceans. There

are also large reductions in RMS errors of the ocean

currents, particularly in the SouthernHemisphere. RMS

errors for zonal velocity are reduced by 16%–31% in the

tropical oceans, 29%–39% in the northern oceans, 45%

in the South Pacific, 43% in the SouthAtlantic, and 66%

in the Southern Ocean. RMS errors for meridional ve-

locity are reduced by 21%–36% in the tropical oceans,

33%–45% in the northern oceans, 43% in the South

Pacific, 45% in the South Atlantic, and 66% in the

Southern Ocean.

We show the median regional RMS errors for tem-

perature, the first and third quartiles, confidence limits,

and outliers over the course of the 1991–98 experiments

in Fig. 5. The height of each box indicates the inter-

quartile range, the horizontal line inside indicates the

median, and whiskers extend to approximately 62.7

standard deviations. When comparing two methods, it is

typical to consider the difference in medians statistically

significant if the notches inside their respective boxes do

not overlap.MedianRMSerrors for the ensemble-based

methods are below that of both 3DVar cases and the

reference perfect-forcing case in the North Pacific,

North Atlantic, and tropical Atlantic. RMSEs for the

larger ensemble (k 5 28) LETKF and hybrid are sig-

nificantly below those for 3DVar in all regions. The

smaller ensemble hybrid (k 5 8) performs similarly to

the larger ensemble hybrid (k 5 28) case in lower-

resolution regions, while the more highly resolved

tropics benefit from increased ensemble size.

The ensemble methods produce significantly lower

RMSEs than 3DVar for all prognostic model variables

in the North Atlantic (Fig. 6). The hybrid is again shown

to reduce biases versus LETKF alone. The RMS errors

for LETKF are significantly below the reference perfect-

forcing 3DVar for all variables, indicating that the

background error used by 3DVar is overestimated in

this region. Upon examining the temporal evolution

between 100- and 200-m depths, we find that errors in-

troduced via noise in assimilated observations are am-

plified along strong temperature or salinity gradients.

Because of the simple structure of its error covariance

matrix, 3DVar produces approximately isometric anal-

ysis increments that have low fidelity relative to the

spatial structure of these gradients. As a result, fast-

growing errors may advect for weeks to months around

the gyre until new observations are available within a

range close enough to correct these transported local-

ized errors. For the ensemble methods however, the

ensemble spread naturally increases along strong fronts,

thus allowing LETKF to form a dynamically aware error

FIG. 4. Global observed- minus forecast-RMS deviations (RMSD) for 3DVar (casec01 is red

and 16 is dark red ), the reference perfect-forcing 3DVar (gray), LETKF (green), and the

hybrid (blue) for (left) temperature and (right) salinity.
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covariance matrix that reduces the magnitude of fast-

growing errors before they are advected.

Figure 7 shows time mean statistics along the equator

from the surface to 300-m depth. The distribution of

ensemble spread indicates that the largest uncertainty in

temperature is at the location of the thermocline depth.

The ensemble of surface forcing conditions largely

drives this uncertainty. The largest estimated errors in

the analysis are also concentrated at the thermocline

depth. This is in part due to the fact that observational

errors are larger where the observed vertical gradients

are larger (due to errors in representativeness), and in

part due to the background error covariance being

larger at this depth.

Errors in heat content in the tropics are largely due to

misplacement of the thermocline depth. We explore

errors in the thermocline by comparing the 208C isotherm

depth of the nature run (truth) to 3DVar and the hybrid

in the equatorial Pacific during two years that include the

1997/98 ENSO (Fig. 8). The impacts of surface forcing

errors on the 208C isotherm are illustrated by comparing

the reference perfect-forcing 3DVar with the perturbed-

forcing 3DVar. In all experiments we observe errors

propagating eastward at about 1.9ms21, indicative of

uncertainties in the timing, intensity and propagation

speed of equatorial Kelvin waves (Picaut et al. 2002). We

also observe westward propagating errors that are partic-

ularly noticeable throughout the second half of 1998, which

appear to correspond to mixed Rossby–gravity (Yanai)

waves (Shinoda 2010) traveling at about 0.3–0.4ms21. As

these are present in the reference perfect-forcing case,

their genesis can be attributed to observational noise.

FIG. 5. Box-and-whisker plots of analysis minus truth RMSE (color) and stem plots of bias (black open circles) for temperature (8C).
Results are shown for LETKF (green) with ensemble size k5 28, the hybrid with ensemble size k5 28 (blue) and k5 8 (light blue), the

operational 3DVar with two randomly chosen surface forcings 16 (dark red) and 01 (red), and the reference perfect-forcing case (gray).

Outlier values are indicated with open circles in the respective color. The median of the reference perfect-forcing case is further indicated

with a horizontal black line to aid visual comparison. (from top left to bottom right) Results are subdivided into regions as defined in Table

1. With statistical significance, RMS errors for the (k5 28) ensemble methods are typically below those for 3DVar. Relative to LETKF,

the hybrid reduces imposed biases introduced in the surface forcing ensemble.
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Additional uncertainties in surface forcing conditions in-

tensify these errors because the resulting background state

is typically farther from observations and consequently

requires a larger adjustment.

During the fourth quarter (Q4) of 1997, 3DVar

produces a wide region in the eastern Pacific that is at

first too deep and then too shallow by over 20m (cor-

responding to the strong spike in RMSE during this

FIG. 6. As in Fig. 5, but only for the North Atlantic and for (from top left to bottom right)T, S,U,V, SST, and SSH.

Outliers are not shown. The hybrid reduces imposed biases introduced in the surface forcing ensemble that partic-

ularly affect the temperature and salinity fields for LETKF.

FIG. 7. (a) Time-averaged (1991–98) temperature (contours) and ensemble spread (color shaded) for the top 300m at the equator in 8C
for the three longitude regions indicated. Ensemble spread is associated with the thermocline depth. It increases in the top 50m in the

eastern Pacific andAtlantic Oceans, and has a maximum in the IndianOcean. (b) The zonally averaged time-mean absolute analysis error

at the equator for the five different methods. The errors reach their maximum at the thermocline depth. The ensemble methods reduce

error relative to the operational 3DVar.
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period, as seen in Fig. 3). This corresponds to the tran-

sition into the peak deepening of the thermocline in the

eastern Pacific in the fall of 1997. As the El Niño sub-

sides during the spring of 1998, both 3DVar and LETKF

have increased errors in their response to the reversal.

The ensemble spread in this region is small, and is in-

dicative of a temporary filter divergence because

LETKF overly trusts the model forecast versus the ob-

servations during this period. The hybrid is the most

accurate in this case, as it compensates for the under-

estimated ensemble spread with a fixed minimum

background error covariance. As shown in Fig. 9,

LETKF introduces a shallow bias in the western Pacific

that is reduced using the hybrid. The hybrid reduces 1)

the majority of the analysis errors exhibited by LETKF

throughout the western Pacific, 2) the most extreme

errors in the eastern Pacific exhibited by 3DVar in Q4

1997 and LETKF during spring 1998, and 3) the west-

ward propagating errors of the reference perfect-forcing

case throughout the second half of 1998.

The three cases for 3DVar, two using randomly se-

lected surface forcing conditions from the 28-member

ensemble and one using perfect forcing, indicate a range

of possible performance of 3DVar depending on the

surface boundary conditions. The perfect initial condi-

tions in the reference perfect-forcing case are forgotten

within the first few months. This time scale is largely

determined by the number of observations assimilated,

and the magnitude of their errors. A large spike in

RMSEs is present in the 3DVar (01) case during the

1997/98 ENSO period. Because the only difference

between this case and the reference perfect-forcing case

is the surface forcing, and the spike does not appear in

the 3DVar (16) case, the cause can be attributed to the

surface forcing rather than a fundamental aspect of the

3DVar method.

FIG. 8. The 208 isotherm depth (m) averaged 58S–58N and 1308E–808W in the equatorial Pacific during 1997/98. (from left to right)

Nature run (truth), errors in the reference perfect-forcing 3DVar, 3DVar (surface case 01), LETKF, and hybrid. The hybrid reduces

persistent errors in the eastern Pacific for 3DVar (surface case 01) and LETKF associated with the onset of ENSO, as well as errors caused

by observational noise.

FIG. 9. Time mean absolute errors (solid) and bias (dashed) of

the 208 isotherm depth in the equatorial Pacific from 58S to 58N,

corresponding to Fig. 7 for the reference perfect-forcing 3DVar

(gray), 3DVar (surface case 01) (red), LETKF (green), and hybrid

(blue). Across the equatorial Pacific, the hybrid reduces average

absolute errors below those of 3DVar and LETKF. LETKF in-

troduces a shallow bias in the western Pacific that is reduced using

the hybrid, thus reducing the absolute errors for the hybrid to ap-

proximately equal with the reference perfect-forcing 3DVar.
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The Desroziers et al. (2005) approach is used to di-

agnose the observation error as shown in Fig. 10, in

which the diagnosed observation errors for the ensem-

ble methods are closer to the prescribed values than for

the 3DVar experiments. The observation error variance

is prescribed, and therefore known. The observation

error cross-covariance, however, is assumed to be zero

even though this assumption is known to be inaccurate.

The diagnosed observation error, which is larger than

the prescribed values, may be compensating for this

inaccuracy.

The RMSE of each experiment, the known time-

averaged ensemble spread of LETKF and the hybrid,

and the corresponding climatological background error

used by 3DVar are all shown in Fig. 11. The time-averaged

ensemble spread is nearly identical between LETKF and

the hybrid. The ensemble spread underestimates the

RMSEs, on average, while the climatological background

error is an overestimate. Using the hybrid largely elimi-

nates the bias implemented through the surface forcing

fields on the LETKF solution.

A preliminary application of the hybrid to real his-

torical temperature and salinity profile data indicates a

clear reduction in temperature and salinity RMSD using

the hybrid versus 3DVar (Fig. 12). Analogous results

with the OSSE lead us to believe that this likely trans-

lates to a reduction in RMSEs. Biases are generally re-

duced by the hybrid. In particular, a steady growth in the

temperature and salinity biases exhibited by 3DVar

is completely eliminated by the hybrid. A gradual

FIG. 10. (top) Daily profiles of mean global observation error (sr) for (left) T and (right) S from 1991 to 1998 (light

gray), and their average (black) computed in observation space with the diagnosed observation errors shown for

3DVar (red for 01 and dark red for 16), the reference perfect-forcing 3DVar (dark gray), LETKF (green), and the

hybrid (blue). (bottom) The 9-month moving average of daily mean global observation error (black) and diagnosed

observation error (colors as in top) for (left) T and (right) S.

4672 MONTHLY WEATHER REV IEW VOLUME 143



decrease in temperature RMSD over time is paired

with a gradual increase in salinity RMSD.

4. Conclusions

The Hybrid-GODAS significantly reduces RMS er-

rors versus the NCEP operational 3DVar and reduces

growing biases in temperature and salinity produced

respectively by LETKF and 3DVar. The improvements

in accuracy are found to hold for both observed and

unobserved model fields, assessed both globally and

regionally. In particular, the hybrid has superior per-

formance in the tropical Pacific when compared to all

other methods. Two main features of the Hybrid-

GODAS are responsible for these improvements:

1) the improved representation of errors in the surface

forcing and interior ocean via an ensemble and 2) the

inflationary effects of the hybrid gain.

While 3DVar is limited to a single realization of sur-

face forcing conditions, the LETKF component of the

hybrid can simultaneously usemultiple plausible surface

forcing scenarios. Further, the observation–localization

used by LETKF allows the analysis ensemble to be

formed with different linear combinations of the ocean

members in different regions around the globe, thus

expanding the impacts of the surface forcing ensemble

diversity. Of course, any hybrid method is limited by the

effectiveness of its climatological component. To im-

prove the hybrid outside of the tropical Pacific, further

work must be done to improve the background error

covariance matrix used in the operational 3DVar.

Examination of the 208C isotherm, a proxy for ther-

mocline depth, in the equatorial Pacific reveals the

largest errors occurred in the eastern Pacific during

ENSO transitions. During the 1997/98 El Niño, surface
conditions in one of the randomly chosen forcing per-

turbations used to drive the 3DVar caused broad errors

in the 208C isotherm depth throughout the latter half of

1997. Errors induced by both observational noise and

surface forcing in the equatorial Pacific are generally

FIG. 11. (top) Global average forecast minus truth RMSE (solid gray and colored lines) compared to global average forecast ensemble

spread (dashed gray and red lines) by depth for (left) T and (right) S over the experiment period 1991–98, computed in observation space.

The distribution of daily global averages of ensemble spread for LETKF is shown (light gray) for the period 1991–98. (bottom) Corre-

sponding bias for (left)T and (right) S (note the change in scale). Results are shown for LETKF (green), the hybrid (blue), 3DVar (red for

01 and dark red for 16), and the reference perfect-forcing 3DVar (dark gray). The LETKF ensemble typically underpredicts the errors

attributable to the small sample size of the ensemble distribution; while 3DVar consistently overpredicts the errors. LETKF improves

accuracy vs 3DVar but causes an increase in temperature and salinity biases. The hybrid, utilizing a combination of error estimates coming

from both LETKF and 3DVar maintains the accuracy of LETKF while reducing the introduced biases.
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reduced by the hybrid. The hybrid analysis of the trop-

ical Pacific simultaneously provides an improved esti-

mate of upper ocean heat content along with quantitative

estimates of uncertainty. With the combination of im-

proved upper ocean heat content, improved SST, and

consideration of surface wind stress uncertainty, we

anticipate the Hybrid-GODAS will lead to increased

skill in ENSO prediction within a coupled model

framework.

The results of a preliminary reanalysis using real ob-

servational data over the same time period as the OSSE

indicate that a similar qualitative improvement is pro-

duced with the hybrid versus the operational 3DVar.

While errors in the model and observed data increase

FIG. 12. Observedminus forecast (top)RMSDand (middle) bias for the historical data reanalysis experiment using

the hybrid system (blue) and 3DVar (red) for (left) T and (right) S; included is the 3-month moving average (solid

lines), a linear regression (dashed lines), and the daily data for the hybrid (light blue thin lines). (bottom) TheRMSD

(solid lines) and bias (dotted lines) for each vertical level with daily data for the hybrid (light blue thin lines) and

3DVar (light red thin lines).
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the total noise present in the system, the reduction in

observed-minus-forecast RMSD in both temperature

and salinity is unambiguous. Further, biases are gen-

erally reduced and positive trends in the bias of both

temperature and salinity errors are completely elimi-

nated by the hybrid. Future work is needed to extend

this reanalysis through the Argo era, in which signifi-

cant changes occurred in the global ocean observing

network.

The EnKF methods appear to offer an advantage

over a deterministic 3DVar approach. While we have

demonstrated quantitatively that the mean states have

improved, it is difficult to isolate whether the primary

advantage comes from a better estimation of the first or

second statistical moments. Extending the set of two

perturbed-forcing 3DVar OSSE cases to an exhaustive

set of 28 cases using surface forcing corresponding to

each of the LETKF and hybrid ensemble members

could strengthen the argument for the latter. We have,

however, identified reduction in errors by LETKF along

evolving temperature and salinity gradients, as com-

pared to the coarse corrections made by the dynamically

unaware 3DVar. We note that only errors in surface

forcing have been considered for representing model

errors in this study. Increased representation of sys-

tematic model errors is needed for further improvement

of ensemble-based ocean data assimilation.

The Hybrid-GODAS is currently being implemented

as the ocean component in the prototype next-generation

CFSv3 at NCEP. In addition to its application for sea-

sonal forecasting, the NCEP Climate Prediction Center

(CPC) uses the output from GODAS to monitor and

understand ENSO in near–real time (Huang et al. 2010).

We anticipate that the improvements in state estimation

and the introduction of uncertainty estimates, particularly

for SST, will significantly enhance the utility of GODAS

for this purpose. Further, we expect the hybrid approach

to be applied with the Simple Ocean Data Assimilation

(SODA) analysis of decadal ocean variability (Carton

et al. 2000a,b; Carton andGiese 2008) at theUniversity of

Maryland.
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